Managing the Option to use Refined Analysis in Bridge Design or Bridge Evaluation

Sue Hida, P.E.; Dr. Toorak Zokaie, P.E.

California Dept. of Transportation

Objective: LL Analysis—Awareness of Options

- Background
 - AASHTO Highway Subcommittee on Bridges/Structures (HSCOBS) T₅ Technical Committee for Loads/Load Distribution
 - FHWA/AASHTO scan of European practice
- Levels of analysis
- Caltrans' special study
- Considerations for Managers, Developers of 3D Bridge Analysis Software

Background

- From 1931-2002, "s-over" factors
- 1980's: NCHRP 12-26; 1994 LRFD 1st Ed.
- 2003: NCHRP 12-62; 2006-7 T5 Review
 - Bridge designers 5-yrs later were no longer complaining of complexity.
 - Step back in accuracy; recalibration reqd.
 - Software already available for more refined LL analysis

- Refined analysis in bridge design
- Refined analysis in bridge rating

Eurocode Background

- Genesis: Commission of European ('75)
 eliminate technical trade obstacles by
 "harmonizing technical specifications"
- Nat. Annex: alt. Procedures; values of "Nationally Determined Parameters"
- Load models (LM) calibrated for characteristic, frequent values
 - LM1—tandem + UDL on "unfavorable parts of *influence surface*, both directions"
 - LM2—single axle w/dynamic ampl.
 - LM3—special vehicles
 - LM4—crowd loading

ABSS Scan Team Findings

- Grillage analysis typically used [UK, Finland, Austria, Germany, France]
 - Not that much more time consuming to create grillage vs. girder model
 - Engineer has better "feel" for structure
 - Quicker response to field changes
- Refined analysis used to improve funding decisions wrt rehab/replace
- Use of lower β_T on existing bridges

Implementation of Scan-Findings

- Work w/AASHTO T5; distribute the report
- USA Survey on Refined Analysis
 - Used in rating, rehab decisions
 - States just getting in to it for design
 - Many different tools
- Training: Tried ½ day theory, ½ day program-specific; really need 3 days
 - Working with software vendors
 - Delivery starting with NC, WV (HOLD)

Level 1 Analysis

- Beams: 3 DOF at each node; LLdf's
- Single-spline longitudinal analysis
- Separate 2D bent analysis

"Fanning" of load not captured

Level 2 Analysis

- 2D grillage of beam elements representing girders and deck
- 2.5D single-spline w/addition of substructure elements

Level 3 Analysis

- Beam elements AND shell elements for deck (6 DOF @ ea. node; stresses at midpoints along sides of elements)
- Level 3+: Further discretization of girders
- Level 3+: With time dependent material properties for construction staging

Caltrans Investigation

•CIP MC PT Concrete Box Girder w/HIGH force effects per 2.5D analysis

Structure Policy & Innovation (Barton, Mike, Sue, Toorak)

Structure Design (Tony, Tom, Marc and 200+)

Caltrans Investigation, cont. Modeling Options: Full 3D Plate Mesh Size Load Application Response Calculation

- Modeling Options: 3D Beam &Plate
 - Mesh Size
 - Load Application: Influence Surface
 - Response Calculation
 - Efficiency of Run Time

- Caltrans*
- Modeling Options: Verification with Cantilever Beam
 - Beam; Multi-element Beam
 - Plate: Course & Fine Mesh
 - Beam & Plate

Modeling Options: Verification

<u>Model Type</u>	End Displacement	% Difference
Beam with Shear Deformation	1.2091 in	Base
Multi-Element Beam (W/ Rigid Links)	1.220 in	0.90%
Course Mesh Plate (End Offset)	1.2125 in	0.28%
Fine Mesh Plate (Web to CL flange)	1.1316 in	-6.4%
Beam & Plate	1.2164 in	-0.25%

Caltrans*

- Response in Question: Column Moment
- •Important Parameters:
 - •# Spans: 2 (150'-150'), 3 (150'-225'-150')
 - •Skew: 0, 45 deg.
 - •Width (#Columns): 27'(1), 57'(2), 107'(4)
 - •Col. Height: 20', 70'
 - Abutment Fixity: Roller, Slider
 - Column Bot. Fixity: 1-col=Fix, Multi-col=Pin

- Loading and Analysis
- •3D:
 - Create Influence Surface for Longitudinal and Transverse Moments
 - Position HS20 Truck to Maximize moment (MT and ML and their corresponding ML and MT)
 - Calculate Mmax: Resultant of ML and MT

Caltrans Investigation, cont. •3D Loading and Analysis

•Influence Surface for Longitudinal Column Moment

•Influence Surface for Transverse Column Moment

- Loading and Analysis
- •2D:
 - Create spine model, calculate reaction from HS20 truck: P, ML (ignore MT)
 - Move P over Pier model, find MT
 - Distribute ML to columns
 - Calculate Mmax: Resultant of MT and ML

Caltrans Investigation, cont. 2.5D Loading and Analysis

Spine Model of Bridge

Caltrans*

- Loading and Analysis
- •2.5-D:
 - Create spine model, calculate reaction from HS20 truck: P, ML, MT1
 - Move P over Pier model, find MT2
 - Distribute ML & MT1 to columns
 - •MT = MT1+MT2
 - Calculate Mmax: Resultant of MT and ML

- •2.5D/3D Moment Ratios
 - Single Column Bents are highly overestimated

- •2.5D/3D Moment Comparison
 - Approximations are similar in Skewed and Right Bridges

2.5D/3D Moment Comparison (MT & ML)
 MT Overestimated, ML Underestimated

- •2.5D/3D Total Moment Comparison
 - Total Moments are overestimated: 1 to 3 times

- •2D/3D Total Moment Comparison
 - •2D Procedure is conservative but less than 2.5D
 - 2D can be slightly unconservative (one case observed)

- 2.5D/2D Total Moment Comparison
 - •2.5D is more conservative than 2D in skewed bridges

Conclusions of Investigation

- 2D or 2.5D Analysis has inherent approximations
- 2D or 2.5D Analysis is highly conservative for single-column bents
- •2D is less conservative than 2.5D and generally not unconservative
- •3D Analysis tools <u>are available</u>; live loading is becoming available in current tools
- 3D Analysis procedures need to be streamlined

Management Considerations

- APPROXIMATE LL analysis methods....
 - Extra "margin" can be +/-, and large!
- 2D "correction factor"—not feasible
- Consider refined analysis when
 - Cross-section is extremely irregular
 - Layout is extremely irregular
 - 2D results are high; cost-savings desired
 - Significantly skewed supports
 - Non-standard vehicular or torsional loads
 - Long-span CR, SH, TU
- Usage is NOT a clear-cut decision!

Management Considerations, cont.

- Pro Refined Analysis
 - Potential cost savings (new bridges)
 - Better decisions in rehab (existing)
 - Better "feel" for structural behavior
 - A model to facilitate quick response to field changes, permit requests
- Anti-Refined Analysis
 - Cost; Learning-curve/project time
 - 3D liveloader not totally automated

Overall Conclusions/Recommendations

- Conduct a study of beam-slab bridges similar to that done for CIP Concrete
 MC PT Box Girders
- Software developers should ask users how to improve 3D live-loader so that it would be used (bought) more often
- Users of 3D live-loaders: talk to developers!
 GRACEFULLY partner

EFULLY partner Into the future!

Thank you for your attention!

Also thanks to *Toorak* and:

•Mike Keever, Mark Mahan and the Caltrans
Team: Issam Noureddine, Bahram
Mosaddad, Kevin Chang, Jaro Simek,
Ahmed Ibrahim

 Prof. Dennis Mertz, Univ. of Delaware the FHWA/AASHTO ABSS Scan Team

Disclaimer: The contents of this presentation reflect the opinions of the authors and not necessarily the CA Department of Transportation.